Weekend Special Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: netbudy65

Databricks-Generative-AI-Engineer-Associate Databricks Certified Generative AI Engineer Associate Questions and Answers

Questions 4

What is the most suitable library for building a multi-step LLM-based workflow?

Options:

A.

Pandas

B.

TensorFlow

C.

PySpark

D.

LangChain

Buy Now
Questions 5

A Generative AI Engineer has been asked to design an LLM-based application that accomplishes the following business objective: answer employee HR questions using HR PDF documentation.

Which set of high level tasks should the Generative AI Engineer's system perform?

Options:

A.

Calculate averaged embeddings for each HR document, compare embeddings to user query to find the best document. Pass the best document with the user query into an LLM with a large context window to generate a response to the employee.

B.

Use an LLM to summarize HR documentation. Provide summaries of documentation and user query into an LLM with a large context window to generate a response to the user.

C.

Create an interaction matrix of historical employee questions and HR documentation. Use ALS to factorize the matrix and create embeddings. Calculate the embeddings of new queries and use them to find the best HR documentation. Use an LLM to generate a response to the employee question based upon the documentation retrieved.

D.

Split HR documentation into chunks and embed into a vector store. Use the employee question to retrieve best matched chunks of documentation, and use the LLM to generate a response to the employee based upon the documentation retrieved.

Buy Now
Questions 6

A small and cost-conscious startup in the cancer research field wants to build a RAG application using Foundation Model APIs.

Which strategy would allow the startup to build a good-quality RAG application while being cost-conscious and able to cater to customer needs?

Options:

A.

Limit the number of relevant documents available for the RAG application to retrieve from

B.

Pick a smaller LLM that is domain-specific

C.

Limit the number of queries a customer can send per day

D.

Use the largest LLM possible because that gives the best performance for any general queries

Buy Now
Questions 7

Which TWO chain components are required for building a basic LLM-enabled chat application that includes conversational capabilities, knowledge retrieval, and contextual memory?

Options:

A.

(Q)

B.

Vector Stores

C.

Conversation Buffer Memory

D.

External tools

E.

Chat loaders

F.

React Components

Buy Now
Questions 8

A Generative Al Engineer is tasked with developing an application that is based on an open source large language model (LLM). They need a foundation LLM with a large context window.

Which model fits this need?

Options:

A.

DistilBERT

B.

MPT-30B

C.

Llama2-70B

D.

DBRX

Buy Now
Questions 9

After changing the response generating LLM in a RAG pipeline from GPT-4 to a model with a shorter context length that the company self-hosts, the Generative AI Engineer is getting the following error:

Databricks-Generative-AI-Engineer-Associate Question 9

What TWO solutions should the Generative AI Engineer implement without changing the response generating model? (Choose two.)

Options:

A.

Use a smaller embedding model to generate

B.

Reduce the maximum output tokens of the new model

C.

Decrease the chunk size of embedded documents

D.

Reduce the number of records retrieved from the vector database

E.

Retrain the response generating model using ALiBi

Buy Now
Questions 10

A Generative AI Engineer is designing a RAG application for answering user questions on technical regulations as they learn a new sport.

What are the steps needed to build this RAG application and deploy it?

Options:

A.

Ingest documents from a source –> Index the documents and saves to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> Evaluate model –> LLM generates a response –> Deploy it using Model Serving

B.

Ingest documents from a source –> Index the documents and save to Vector Search –> User submits queries against an LLM –> LLM retrieves relevant documents –> LLM generates a response -> Evaluate model –> Deploy it using Model Serving

C.

Ingest documents from a source –> Index the documents and save to Vector Search –> Evaluate model –> Deploy it using Model Serving

D.

User submits queries against an LLM –> Ingest documents from a source –> Index the documents and save to Vector Search –> LLM retrieves relevant documents –> LLM generates a response –> Evaluate model –> Deploy it using Model Serving

Buy Now
Questions 11

A Generative Al Engineer is building a system which will answer questions on latest stock news articles.

Which will NOT help with ensuring the outputs are relevant to financial news?

Options:

A.

Implement a comprehensive guardrail framework that includes policies for content filters tailored to the finance sector.

B.

Increase the compute to improve processing speed of questions to allow greater relevancy analysis

C Implement a profanity filter to screen out offensive language

C.

Incorporate manual reviews to correct any problematic outputs prior to sending to the users

Buy Now
Questions 12

A Generative AI Engineer just deployed an LLM application at a digital marketing company that assists with answering customer service inquiries.

Which metric should they monitor for their customer service LLM application in production?

Options:

A.

Number of customer inquiries processed per unit of time

B.

Energy usage per query

C.

Final perplexity scores for the training of the model

D.

HuggingFace Leaderboard values for the base LLM

Buy Now
Questions 13

A Generative AI Engineer is building an LLM to generate article summaries in the form of a type of poem, such as a haiku, given the article content. However, the initial output from the LLM does not match the desired tone or style.

Which approach will NOT improve the LLM’s response to achieve the desired response?

Options:

A.

Provide the LLM with a prompt that explicitly instructs it to generate text in the desired tone and style

B.

Use a neutralizer to normalize the tone and style of the underlying documents

C.

Include few-shot examples in the prompt to the LLM

D.

Fine-tune the LLM on a dataset of desired tone and style

Buy Now
Questions 14

A Generative Al Engineer interfaces with an LLM with prompt/response behavior that has been trained on customer calls inquiring about product availability. The LLM is designed to output “In Stock” if the product is available or only the term “Out of Stock” if not.

Which prompt will work to allow the engineer to respond to call classification labels correctly?

Options:

A.

Respond with “In Stock” if the customer asks for a product.

B.

You will be given a customer call transcript where the customer asks about product availability. The outputs are either “In Stock” or “Out of Stock”. Format the output in JSON, for example: {“call_id”: “123”, “label”: “In Stock”}.

C.

Respond with “Out of Stock” if the customer asks for a product.

D.

You will be given a customer call transcript where the customer inquires about product availability. Respond with “In Stock” if the product is available or “Out of Stock” if not.

Buy Now
Questions 15

A Generative Al Engineer is building an LLM-based application that has an

important transcription (speech-to-text) task. Speed is essential for the success of the application

Which open Generative Al models should be used?

Options:

A.

L!ama-2-70b-chat-hf

B.

MPT-30B-lnstruct

C.

DBRX

D.

whisper-large-v3 (1.6B)

Buy Now
Questions 16

A Generative AI Engineer is creating an agent-based LLM system for their favorite monster truck team. The system can answer text based questions about the monster truck team, lookup event dates via an API call, or query tables on the team’s latest standings.

How could the Generative AI Engineer best design these capabilities into their system?

Options:

A.

Ingest PDF documents about the monster truck team into a vector store and query it in a RAG architecture.

B.

Write a system prompt for the agent listing available tools and bundle it into an agent system that runs a number of calls to solve a query.

C.

Instruct the LLM to respond with “RAG”, “API”, or “TABLE” depending on the query, then use text parsing and conditional statements to resolve the query.

D.

Build a system prompt with all possible event dates and table information in the system prompt. Use a RAG architecture to lookup generic text questions and otherwise leverage the information in the system prompt.

Buy Now
Questions 17

A Generative Al Engineer has already trained an LLM on Databricks and it is now ready to be deployed.

Which of the following steps correctly outlines the easiest process for deploying a model on Databricks?

Options:

A.

Log the model as a pickle object, upload the object to Unity Catalog Volume, register it to Unity Catalog using MLflow, and start a serving endpoint

B.

Log the model using MLflow during training, directly register the model to Unity Catalog using the MLflow API, and start a serving endpoint

C.

Save the model along with its dependencies in a local directory, build the Docker image, and run the Docker container

D.

Wrap the LLM’s prediction function into a Flask application and serve using Gunicorn

Buy Now
Questions 18

A Generative Al Engineer is building a production-ready LLM system which replies directly to customers. The solution makes use of the Foundation Model API via provisioned throughput. They are concerned that the LLM could potentially respond in a toxic or otherwise unsafe way. They also wish to perform this with the least amount of effort.

Which approach will do this?

Options:

A.

Host Llama Guard on Foundation Model API and use it to detect unsafe responses

B.

Add some LLM calls to their chain to detect unsafe content before returning text

C.

Add a regex expression on inputs and outputs to detect unsafe responses.

D.

Ask users to report unsafe responses

Buy Now
Exam Name: Databricks Certified Generative AI Engineer Associate
Last Update: Oct 16, 2025
Questions: 61

PDF + Testing Engine

$134.99

Testing Engine

$99.99

PDF (Q&A)

$84.99